QA Specification for Binders AN UPD ATE

> Dave Anderson NECEPT - Penn State University

> > NEAU/PG Meeting

Washington, DC February 14, 2001

#### WWW.SUPERPAVE.PSU.EDU



### Some Questions - Early Answers

- Retain supplier certification? YES
  - ✓PP26 still guiding document
- Payment and acceptance at HMA plant? YES
   ✓HMA Producer samples at plant
- HMA responsible for their activities? YES
- Statistically based? YES
- > Include conflict resolution? YES
- Include payment schedule? YES

#### **Complimentary Activities**

- Split Sampling Program
  - Establish variability and bias
- Simulation Programs
  - Simulate payment schedule and userproducer within and between variability
- > Database
  - Means for storing and analyzing data
- Common Certificate of Analysis
  - Means for rational data entry tracking





- > Three sets two samples sent to date
- > Fourth set currently under test
- Sets five and six planned for:
  - ✓March
  - ✓ April
- > Summary statistics posted on Web Site
- > More detailed data analysis now underway

| Ν  | 9 @ 2 to 3s          | , 4 (        | Dutli       | ers         |             |      |
|----|----------------------|--------------|-------------|-------------|-------------|------|
|    | Split Sampling A     | nalysis      | s, Sam      | ple SS      | 6-1         |      |
| C  | Property             | Total<br>No. | <u>+</u> 1s | <u>+</u> 2s | <u>+</u> 3s | > 3s |
| 1. | Rotational Viscosity | 30           | 22          | 4           | 2           | 2    |
|    | Mass Change          | 30           | 21          | 8           | 1           | 0    |
| .0 | G*/sinδ, Tank        | 31           | 23          | 5           | 2           | 1    |
|    | G*/sinδ, RTFOT       | 31           | 19          | 12          | 0           | 0    |
| D  | G*sinδ, PAV          | 29           | 21          | 6           | 2           | 0    |
|    | S(60)                | 31           | 24          | 4           | 2           | 1    |
|    | M(60)                | 31           | 19          | 12          | 0           | 0    |
|    |                      |              |             |             |             |      |

| 17 @ | 2 to 3s, | 0 Outliers |
|------|----------|------------|
|------|----------|------------|

|   | Split Sampling                      | Analys         | sis, Sa        | Imple S     | S-2         |             |
|---|-------------------------------------|----------------|----------------|-------------|-------------|-------------|
| J | Property                            | Total<br>No.   | <u>+</u> 1s    | <u>+</u> 2s | <u>+</u> 3s | > 3s        |
|   | Rotational Viscosity<br>Mass Change | 30<br>30       | 20<br>20       | 7<br>8      | 3<br>2      | 0<br>0      |
|   | G*/sinδ, Tank<br>G*/sinδ, RTFOT     | 29<br>29       | 22<br>21       | 5<br>5      | 2<br>3      | 0<br>0      |
|   | G*sinδ, PAV<br>S(60)<br>M(60)       | 28<br>31<br>31 | 19<br>23<br>26 | 7<br>6<br>2 | 2<br>2<br>3 | 0<br>0<br>0 |
|   |                                     |                | 20             | -           |             | Ū           |

| N        | 13 @ 2 to 3s, 4 Outliers |              |             |             |             |      |  |
|----------|--------------------------|--------------|-------------|-------------|-------------|------|--|
| E        | Split Sampling           | Analys       | sis, Sa     | Imple S     | S-3         |      |  |
| Ç        | Property                 | Total<br>No. | <u>+</u> 1s | <u>+</u> 2s | <u>+</u> 3s | > 3s |  |
|          | Rotational Viscosity     | 29           | 18          | 7           | 2           | 2    |  |
| 10       | Mass Change              | 29           | 26          | 0           | 3           | 0    |  |
| <b>T</b> | G*/sinδ, Tank            | 29           | 22          | 5           | 2           | 0    |  |
| D        | G*/sinδ, RTFOT           | 29           | 22          | 6           | 1           | 0    |  |
| R        | G*sinδ, PAV              | 29           | 21          | 6           | 2           | 0    |  |
|          | S(60)                    | 29           | 20          | 6           | 2           | 1    |  |
| <b>T</b> | M(60)                    | 29           | 20          | 7           | 1           | 1    |  |
|          |                          |              |             |             |             |      |  |
|          |                          |              |             |             |             |      |  |

| 11 @ 2 to 3s         | , 5                                                                                                                                                     | Outli                                                                                                                                                                                                                                                                                               | ers                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Split Sampling /     | Analys                                                                                                                                                  | sis, Sa                                                                                                                                                                                                                                                                                             | mple S                                                                                                                                                                                                                                                                                                                                                                         | SS-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |
| Property             | Total<br>No.                                                                                                                                            | <u>+</u> 1s                                                                                                                                                                                                                                                                                         | <u>+</u> 2s                                                                                                                                                                                                                                                                                                                                                                    | <u>+</u> 3s                                                                                                                                                                                                                                                                                                                                                                                                                                                              | > 3s                                                  |
| Rotational Viscosity | 29                                                                                                                                                      | 17                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                     |
| Mass Change          | 29                                                                                                                                                      | 19                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                     |
| G*/sinδ, Tank        | 29                                                                                                                                                      | 21                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                     |
| G*/sinδ, RTFOT       | 28                                                                                                                                                      | 21                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                     |
| G*sinδ, PAV          | 29                                                                                                                                                      | 22                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                     |
| S(60)                | 29                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                     |
| M(60)                | 29                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                     |
|                      |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |
|                      | 11 @ 2 to 3s<br>Split Sampling A<br>Property<br>Rotational Viscosity<br>Mass Change<br>G*/sinδ, Tank<br>G*/sinδ, RTFOT<br>G*sinδ, PAV<br>S(60)<br>M(60) | 11 @ 2 to 3s, 5         Split Sampling Analys         Property       Total         No.         Rotational Viscosity       29         Mass Change       29         G*/sinδ, Tank       29         G*/sinδ, RTFOT       28         G*sinδ, PAV       29         S(60)       29         M(60)       29 | Image: Massing Analysis       Second State         Property       Total ± 1s         No.       No.         Rotational Viscosity       29       17         Mass Change       29       19         G*/sinδ, Tank       29       21         G*/sinδ, RTFOT       28       21         G*sinδ, PAV       29       22         S(60)       29       20         M(60)       29       20 | 11 @ 2 to 3s, 5 Outliers         Split Sampling Analysis, Sample S         Property       Total $\pm 1s$ $\pm 2s$ No.         Rotational Viscosity       29       17       8         Mass Change       29       19       8         G*/sin\delta, Tank       29       21       5         G*/sin\delta, RTFOT       28       21       5         G*sin\delta, PAV       29       22       5         S(60)       29       20       6         M(60)       29       20       7 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

# Observations

- Need additional training and continuation of technician certification program
- Need improved sampling procedures
   Not well defined better guidelines
   Training and enforcement
- Need to better identify samples/test data
   ✓ Difficult to link supplier tank and lot with lot and sub-lot at HMA plant

#### Sources of Variability

- Material variability inherent variability

   Production related
- Festing variability
  - Attributed to laboratory and technician
  - ✓ Technique-equipment within laboratory
  - ✓Random effect
- > Laboratory bias
  - Systematic error within laboratory
  - ✓ Affect <u>average</u> of one lab versus other

# Sources of variability, cont'd Sampling procedures At producer, HMA plant, etc. Shipping and handling Contamination, tank uniformity, etc. Question - who is responsible for each of these sources of variability? Need to consider in specification Agency's concern is simple: "what is the material in the pavement"











| Issumed Standard Deviation f                                                                  | or Testing<br>Producer                      | User              | Production Mea      | sured Values  | ·            | Lab Bias (*<br>Producer | b)<br>User |
|-----------------------------------------------------------------------------------------------|---------------------------------------------|-------------------|---------------------|---------------|--------------|-------------------------|------------|
| 5*/sin(delta) (Unaged):<br>(D1s, Single Operator)                                             | 0.034                                       | 0.034             | G*/sin(delta) (Unag | ed):          | 1.00         | 0                       | 0          |
| G*/sin(delta) (RTFOT Residue):<br>(D1s, Single Operator)                                      | 0.039                                       | 0.039             | G*/sin(delta) (RTF  | OT Residue):  | 2.20         | 0                       | 0          |
| G*sin(delta) (PAV Residue):<br>(D1s, Single Operator)                                         | 0.079                                       | 0.079             | G*sin(delta) (PAV I | tesidue):     | 5.00         | 0                       | 0          |
| S(60) (PWV Residue):<br>(D1s, Single Operator)                                                | 0.037                                       | 0.037             | S(60) (PW Residue   | 0:            | 300          | 0                       | 0          |
| m(60) (PAV Residue):<br>(D1s, Single Operator)                                                | 0.018                                       | 0.018             | m(60) (PAV Residu   | e):           | 0.300        | 0                       | 0          |
| Reset Default Values<br>Note: Standard deviation values a<br>Default values may be obtained b | s<br>nay be entered by<br>y pressing button | y user,<br>above. | Number of I         | Replicated me | sourements:  | roducer U               | lser<br>1  |
| Simulate                                                                                      |                                             | Change I          | PTV or TV           | Chan          | ge Assumed F | roduction Values        |            |





| Ν      | Common COA                                               |                                  |
|--------|----------------------------------------------------------|----------------------------------|
| E<br>C | Name of Supplier-Terminal<br>Lot No.<br>Tank No.<br>Date | WBPE<br>1234<br>6789<br>01/08-01 |
| E      | WBPE 1234 6789 008                                       | tifica                           |
| г<br>Т | material at terminal, HMA, or                            | user                             |

# Selection of Acceptance Limits

- 1. Relate non-compliance to pavement performance
  - Most desirable approach
  - Impossible models do not exist
- Base acceptance limits on testing variability
  - Use D25 to estimate change in grading temperature associated with D25
  - Testing variability should be no more than partial grade to be realistic



- > Accept on HMA lot basis
  - ✓ Stratified random sampling of binder
  - ✓ Sublots within lot
  - Test random sublot
  - Test results indicate if HMA lot is in compliance
  - Additional testing if not in compliance
- Definition of lots and sub-lots agency specific



- Base acceptance on testing variability (D2S)
  - Frequency of non-conformance controlled to protect producer and user
  - Continuous factor as opposed to discrete
  - ✓ Rejection level at D2S
- Provision to limit continuous nonconformance
- Conflict resolution accommodated





#### **Remaining Issues**

- Select threshold values and payment at threshold values
  - ✓ Demonstrate fairness to user/producer
- > Establish conflict resolution protocol
- Conduct field trials

#### Summary

- Realistic acceptance and payment plan is feasible
  - Testing capabilities are adequate
- > Supporting elements needed
  - ✓ split sampling program
  - ✓regional database
- continued training and tech certification Need to simulate and refine specification in year 2001
- Expect implementation 2002